Halo-Ed: Molecular Genetics Tutorial (MolGenT)

DasSarma Lab

Halo-Ed Portal

Halo-Gen

HaloWeb

Halo-Ed Education & Outreach

Useful Web-Links

About MolGenT

The genetic code is a triplet code, meaning that each set of three nucleotides, or codon, along the sequence of an mRNA molecule is translated into one amino acid. The codons shown on this table are almost universal, and are used in protein synthesis by nearly all organisms, from bacteria to humans. For example, the mRNA nucleotide sequence AUG is translated into methionine, GCU is translated into alanine, and so on. Since 64 different codons are possible, but only 20 amino acids exist, some amino acids are represented by more than one nucleotide sequence. The methionine codon AUG is most often responsible for initiation of protein synthesis, while translation is usually terminated by the codons UAG, UAA, or UGA. To identify the amino acid coded by a particular nucleotide sequence using this chart, first choose the letter from the left-hand flashing box that represents the first base of the codon. Then choose the second base from the top flashing box and find the white box that lines up with both letters. Finally, choose the third base from the set of letters in the right-hand flashing box that lines up with the white box and match your codon to the correct amino acid.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Questions and Suggestions, contact the Halo-Ed Team

Inheritance

Evolutionary Tree

                  Eukaryotic Cells

Cell Cycle

Mitosis

Meiosis

                   Prokaryotic Cells

Binary Fission

Transformation

Conjugation

                     Viruses

                              Bacteriophages

                              Transduction

                             Animal Viruses

                     Model Organisms

DNA & Genes

Nucleotide Structure

Structure of DNA Bases

Base Pairing

Deoxyribose 5' & 3' Ends

Deoxyribonucleotides

DNA Structure

DNA Double Helix

DNA Replication

                    Errors in Replication

DNA Replication, Repair and Recombination

DNA Replication

                    Ladder

                    Helix

Repair of UV Damage

Homologous Recombination

DNA Supercoiling

Gene Expression

          DNA → RNA → Protein

Central Dogma

Genotype vs Phenotype

Phenotype

RNA and Protein Building Blocks

Structure of RNA Bases

Ribose

Ribonucleotides

Amino Acids

Acidic

Basic

Polar

Apolar

Transcription and RNA Processing

RNA Splicing

Translation

tRNA Charging

Genetic Code

Operon

Biotechnology Applications

Impact of Molecular Genetics

Molecular Cloning

PCR Amplification

Protein Expression

DNA Fingerprinting

Genetic Enhancement

Cloning of Animals

CRISPR

Genome Sequencing

Personalized Medicine

Bioremediation

Agriculture and GMOs

          Intellectual Property

MolGenT Test

Copyright © Shiladitya DasSarma